API Reference#
Complete API documentation for ATLAS-Q modules, classes, and functions.
- IR Module (Informational Relativity)
- atlas_q.adaptive_mps
- MPS PyTorch Backend
- atlas_q.mpo_ops
- atlas_q.tdvp
- atlas_q.vqe_qaoa
- atlas_q.grover
GroverConfigOracleBaseFunctionOracleBitmapOracleDiffusionOperatorGroverSearchgrover_search()calculate_grover_iterations()- Overview
- Mathematical Background
- Classes
- Functions
- GroverSearch
- GroverConfig
- OracleBase
- FunctionOracle
- BitmapOracle
- DiffusionOperator
- Convenience Functions
- Performance Considerations
- Implementation Details
- Best Practices
- Use Cases
- See Also
- References
- atlas_q.stabilizer_backend
- Noise Models
- PEPS (2D Tensor Networks)
- Circuit Cutting
- 2D/Planar Circuits
- Distributed MPS
- atlas_q.cuquantum_backend
CuQuantumConfigCuQuantumBackendCuStateVecBackendget_backend()get_statevec_backend()is_cuquantum_available()get_cuquantum_version()benchmark_backend()- Overview
- Installation
- Classes
- CuQuantumConfig
- CuQuantumBackend
- Examples
- Performance Considerations
- Fallback Behavior
- Compatibility
- Troubleshooting
- Best Practices
- Use Cases
- See Also
- References
- atlas_q.quantum_hybrid_system
CompressedQuantumStatePeriodicStateProductStateMatrixProductStatePeriodResultPeriodFinderQuantumClassicalHybridQuantumCircuitGPUAcceleratordemo_compressed_states()demo_period_finding()demo_factorization()demo_quantum_circuits()demo_gpu_acceleration()demo_advanced_features()run_comprehensive_demo()- Overview
- Classes
- Quantum State Representations
- Period-Finding
- Supporting Classes
- Examples
- Performance Characteristics
- Applications
- Best Practices
- Use Cases
- See Also
- References
- Triton GPU Kernels
- atlas_q.diagnostics
- atlas_q.linalg_robust
- atlas_q.truncation
choose_rank_from_sigma()compute_global_error_bound()check_entropy_sanity()analyze_truncation_regime()choose_rank_with_regime()choose_rank_with_coherence()choose_rank_with_decoherence()compute_spectral_coherence()adaptive_chi_from_coherence()coherence_aware_truncation_policy()- Overview
- Mathematical Foundation
- Functions
- choose_rank_from_sigma
- compute_global_error_bound
- check_entropy_sanity
- Examples
- Advanced Usage: Custom Truncation Strategy
- Performance Notes
- Best Practices
- Use Cases
- See Also
- References
Module Overview#
IR Module (NEW in v0.7.0)#
- IR Module (Informational Relativity)
Informational Relativity (IR) integration with pre-computation regime diagnosis, coherence-based grouping, and spectral lifting analysis.
Core Simulation#
- atlas_q.adaptive_mps
Adaptive Matrix Product States with per-bond dimension control and error tracking.
- MPS PyTorch Backend
Basic PyTorch-based MPS implementation.
- atlas_q.mpo_ops
Matrix Product Operators for Hamiltonians and observables.
Variational Algorithms#
- atlas_q.vqe_qaoa
Variational Quantum Eigensolver and Quantum Approximate Optimization Algorithm.
- atlas_q.tdvp
Time-Dependent Variational Principle for quantum dynamics.
- atlas_q.grover
Grover’s quantum search algorithm for unstructured database search with quadratic speedup.
Advanced Backends#
- atlas_q.stabilizer_backend
Efficient simulation of Clifford circuits via stabilizer formalism.
- PEPS (2D Tensor Networks)
Projected Entangled Pair States for 2D tensor networks.
- atlas_q.cuquantum_backend
NVIDIA cuQuantum integration for GPU acceleration.
Specialized Features#
- Circuit Cutting
Circuit partitioning and entanglement forging.
- 2D/Planar Circuits
2D qubit layouts and SWAP synthesis.
- Distributed MPS
Multi-GPU distributed simulation.
- Noise Models
NISQ noise channels and error models.
Period-Finding#
- atlas_q.quantum_hybrid_system
Compressed quantum states and period-finding for Shor’s algorithm.
Performance Optimization#
- Triton GPU Kernels
Custom GPU kernels for tensor operations.
Utilities#
- atlas_q.diagnostics
Monitoring, statistics, and entropy calculations.
- atlas_q.linalg_robust
Robust linear algebra with automatic fallbacks.
- atlas_q.truncation
Truncation strategies and error bounds.
Quick Access#
IR Module (NEW):
atlas_q.ir_enhanced.analyze_state_regime()- Pre-computation regime diagnosisatlas_q.ir_enhanced.analyze_hamiltonian_regime()- Hamiltonian regime analysisatlas_q.ir_enhanced.ir_hamiltonian_grouping()- VQE grouping (4× reduction)atlas_q.ir_enhanced.ir_enhanced_period_finding()- Period finding (42% shot reduction)atlas_q.ir_enhanced.predict_quantum_advantage()- Quantum advantage predictionatlas_q.ir_enhanced.spectral_lifting_analysis()- Spectral structure analysis
Common classes:
atlas_q.adaptive_mps.AdaptiveMPS- Adaptive MPSatlas_q.mpo_ops.MPO- Matrix Product Operatoratlas_q.mpo_ops.MPOBuilder- Hamiltonian builderatlas_q.vqe_qaoa.VQE- Variational Quantum Eigensolveratlas_q.vqe_qaoa.QAOA- Quantum Approximate Optimization Algorithmatlas_q.grover.GroverSearch- Grover’s quantum searchatlas_q.grover.GroverConfig- Grover configurationatlas_q.tdvp.TDVP1Site- 1-site TDVP evolutionatlas_q.tdvp.TDVP2Site- 2-site TDVP evolutionatlas_q.stabilizer_backend.StabilizerSimulator- Stabilizer simulatoratlas_q.peps.PEPS- PEPS tensor networkatlas_q.quantum_hybrid_system.QuantumClassicalHybrid- Period-finding
Common functions:
atlas_q.get_quantum_sim()- Get period-finding classesatlas_q.get_adaptive_mps()- Get adaptive MPS classesatlas_q.get_mpo_ops()- Get MPO operationsatlas_q.get_tdvp()- Get TDVP classesatlas_q.get_vqe_qaoa()- Get VQE/QAOA classesatlas_q.get_stabilizer()- Get stabilizer simulatoratlas_q.get_peps()- Get PEPS classesatlas_q.grover.grover_search()- Convenience function for Grover searchatlas_q.grover.calculate_grover_iterations()- Calculate optimal iterationsatlas_q.mpo_ops.expectation_value()- Compute expectation valuesatlas_q.mpo_ops.apply_mpo_to_mps()- Apply MPO to MPS
Module Import Patterns#
Direct imports (recommended):
from atlas_q.adaptive_mps import AdaptiveMPS
from atlas_q.mpo_ops import MPOBuilder
from atlas_q.vqe_qaoa import VQE, VQEConfig
Lazy imports (legacy compatibility):
from atlas_q import get_adaptive_mps, get_mpo_ops, get_vqe_qaoa
mps_mod = get_adaptive_mps()
AdaptiveMPS = mps_mod['AdaptiveMPS']
mpo_mod = get_mpo_ops()
MPOBuilder = mpo_mod['MPOBuilder']
vqe_mod = get_vqe_qaoa()
VQE = vqe_mod['VQE']
Module imports:
from atlas_q import adaptive_mps, mpo_ops, vqe_qaoa
mps = adaptive_mps.AdaptiveMPS(10, bond_dim=8)
H = mpo_ops.MPOBuilder.ising_hamiltonian(10)
vqe = vqe_qaoa.VQE(H, vqe_qaoa.VQEConfig())
Type Annotations#
ATLAS-Q uses type hints throughout. Common types:
torch.Tensor- PyTorch tensorstorch.dtype- Data types (torch.complex64,torch.complex128)torch.device- Compute devices ('cuda','cpu')np.ndarray- NumPy arraysint- Integersfloat- Floating-point numberscomplex- Complex numbersstr- StringsOptional[T]- Optional valuesList[T]- ListsDict[K, V]- DictionariesTuple[T, ...]- Tuples