Changelog#
All notable changes to ATLAS-Q are documented in this file.
The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.
0.7.0 - 2025-12-16 (IR v1.1.0)#
IR Integration - COMPLETE#
This release completes the Informational Relativity (IR) integration with pre-computation regime diagnosis.
Pre-Computation Diagnosis (NEW)#
Regime Analyzer (
ir_enhanced/regime_analyzer.py): Diagnose quantum problems BEFORE runningIR (Informational Relativity) regime: High coherence, quantum advantage likely
Transition regime: Marginal coherence, needs careful tuning
AIR (Anti-IR) regime: Low coherence, classical methods may be better
GO/NO-GO classification using physics-derived e^-2 threshold (0.135)
analyze_state_regime(),analyze_hamiltonian_regime(),analyze_mps_bond_regime()predict_quantum_advantage()for resource planningshould_use_ir_grouping()for adaptive algorithm selection
Spectral Lifting (NEW)#
Full M_ij Relational Matrix Analysis (
ir_enhanced/spectral_lifting.py):compute_relational_matrix()- Build coherence correlation matricesextract_structure_modes()- Find dominant eigenmodesspectral_grouping()- Group observables by spectral similaritycoherent_structure_score()- Quantify structure detection quality
Performance Improvements (VALIDATED)#
Feature |
Improvement |
Status |
|---|---|---|
VQE Grouping |
4× circuit reduction |
Production |
Period Finding |
42% shot reduction |
Production |
Variance Reduction |
2-60× (VQE) |
Production |
MPS Scalability |
100 qubits in 1.56s |
Validated |
Memory Compression |
10^25× (100 qubits) |
Validated |
New IR Modules#
gradient_grouping.py- Parameter shift optimization with coherenceqaoa_grouping.py- Edge-based cost operator groupingshadow_tomography.py- Adaptive classical shadows with IRstate_tomography.py- IR-enhanced state reconstructiontdvp_observables.py- Real-time coherence tracking for TDVP
Added#
GPU CUDA Backend#
Direct CUDA Driver API integration via ctypes
Pre-compiled PTX kernels (version-independent)
Supports single-qubit gates: H, X, Y, Z, RX, RY, RZ
Supports two-qubit gates: CNOT, CZ, SWAP
f64 precision for numerical stability
2-13× faster than CPU for 15+ qubits
Triton IR Coherence Kernels#
GPU-accelerated coherence computation
compute_response_coherence_triton()for R-bar, V_phi metricsGO/NO-GO classification at GPU speed
Changed#
Improved exception handling in GPU backend
Updated
ir_enhanced/__init__.pyexports for regime analyzerCoherence-aware VQE now includes pre-computation regime analysis
Fixed#
Fixed Triton IR Coherence benchmark (amplitudes vs responses/phases)
Fixed UCCSD Ansatz benchmark imports
Fixed MANIFEST.in to include compiled Rust extensions
Benchmark Results#
30/31 benchmarks passing (cuQuantum optional skip)
7/7 IR Enhanced tests passing
0.6.x Series#
0.6.4 - 2025-11-04#
Added#
UCCSD Ansatz for Molecular VQE#
UCCSD (Unitary Coupled-Cluster Singles and Doubles) (
ansatz_uccsd.py): Chemistry-aware variational ansatzOpenFermion integration for fermionic operator generation
MPS-compatible implementation (no exponential memory)
Pauli string decomposition with
apply_pauli_exp_to_mps()Hartree-Fock reference state initialization
Compatible with VQE for ground state chemistry calculations
Quantum Chemistry & Optimization Hamiltonians#
Molecular Hamiltonian Builder (
mpo_ops.py): PySCF integration for quantum chemistrymolecular_hamiltonian_from_specs()- Build electronic structure HamiltoniansSupport for H2, LiH, H2O, and custom geometry strings
Jordan-Wigner fermion-to-qubit transformation
Compatible with VQE for ground state energy calculations
4/4 tests passing in
test_molecular_hamiltonians.py
MaxCut Hamiltonian Builder (
mpo_ops.py): QAOA graph optimizationmaxcut_hamiltonian()- Build MaxCut problem HamiltoniansWeighted and unweighted graph support
Automatic edge normalization for undirected graphs
Compatible with QAOA for combinatorial optimization
4/4 tests passing in
test_maxcut.py
Advanced Tensor Network Features#
Circuit Cutting (
circuit_cutting.py): Partition large circuits for simulationCoupling graph analysis and entanglement heatmaps
Min-cut and spectral partitioning algorithms
Classical stitching with variance reduction
7/7 tests passing in
test_circuit_cutting.py
PEPS (Projected Entangled Pair States) (
peps.py): 2D tensor networksTrue 2D representation for shallow quantum circuits
Boundary-MPS contraction strategy
PatchPEPS for 4×4 and 5×5 grids
Single and two-site gate application
10/10 tests passing in
test_peps.py
Distributed MPS (
distributed_mps.py): Multi-GPU scalingBond-wise domain decomposition across GPUs
Overlapped communication and computation
Checkpoint/restart for long simulations
10/10 tests passing in
test_distributed_mps.py
cuQuantum Backend (
cuquantum_backend.py): Optional NVIDIA accelerationcuTensorNet 25.x integration for tensor operations
Automatic fallback to PyTorch if unavailable
2-10× speedup on compatible NVIDIA GPUs (requires
cuquantum-python)11/11 tests passing in
test_cuquantum.py(tested with cuQuantum 25.09.1)Install:
pip install cuquantum-python(optional, ~320MB)
Changed#
Improved Import System (Better UX)#
Direct module imports now supported (
__init__.py): Pythonic import patternNew (recommended):
from atlas_q import mpo_ops, tdvp, vqe_qaoaLegacy (still works):
atlas_q.get_mpo_ops()returns dictEnables IDE autocomplete and type hints
Matches standard Python package conventions (like NumPy, PyTorch)
Backwards compatible - old getter pattern still supported
0.5.0 - 2025-10-26#
Added#
GPU Acceleration & Triton Kernels#
Custom Triton kernels for MPS gate operations (1.5-3× speedup)
GPU-optimized tensor contractions with cuBLAS tensor cores
Modular exponentiation kernels for period-finding
77,000+ ops/sec gate throughput achieved
Tensor Network Features#
Noise Models (
noise_models.py): Full Kraus operator framework for NISQ simulationDepolarizing, dephasing, amplitude damping, Pauli noise channels
Stochastic noise applicator with reproducible seeds
Stabilizer Backend (
stabilizer_backend.py): Clifford circuit fast pathO(n²) complexity via Gottesman-Knill theorem
20× speedup over generic MPS
Automatic handoff to MPS for non-Clifford gates
MPO Operations (
mpo_ops.py): Hamiltonian and observable frameworkPre-built Hamiltonians: Ising, Heisenberg, custom spin chains
Expectation values and correlation functions
TDVP (
tdvp.py): Time evolution for Hamiltonian dynamics1-site (conserves bond dimension) and 2-site (adaptive) variants
Krylov subspace methods for efficient evolution
VQE/QAOA (
vqe_qaoa.py): Variational quantum algorithmsGround state finding and combinatorial optimization
Hardware-efficient ansätze with classical optimizer integration
Adaptive MPS Implementation#
Energy-based adaptive truncation with error bounds
Per-bond dimension caps and global memory budgets
Mixed precision support (complex64/complex128) with auto-promotion
Comprehensive statistics tracking and diagnostics
Canonical forms (left, right, mixed) with robust QR/SVD
Documentation & Testing#
Complete whitepaper documenting architecture and algorithms
Research paper with mathematical foundations
75+ unit tests across unit, integration, and performance suites
All 7/7 benchmark suites passing
Performance#
626,454× memory compression (30 qubits)
20.4× Clifford circuit speedup
GPU-accelerated operations throughout
Demonstrated capacity: 100,000+ qubits (χ=64, moderate entanglement)
Changed#
Updated lazy import structure in
__init__.pyEnhanced numerical stability with multi-driver SVD fallback
Improved error tracking and diagnostics
Legend#
Added: New features
Changed: Changes in existing functionality
Fixed: Bug fixes
Performance: Performance improvements