Changelog#

All notable changes to ATLAS-Q are documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

0.7.0 - 2025-12-16 (IR v1.1.0)#

IR Integration - COMPLETE#

This release completes the Informational Relativity (IR) integration with pre-computation regime diagnosis.

Pre-Computation Diagnosis (NEW)#

  • Regime Analyzer (ir_enhanced/regime_analyzer.py): Diagnose quantum problems BEFORE running

    • IR (Informational Relativity) regime: High coherence, quantum advantage likely

    • Transition regime: Marginal coherence, needs careful tuning

    • AIR (Anti-IR) regime: Low coherence, classical methods may be better

    • GO/NO-GO classification using physics-derived e^-2 threshold (0.135)

    • analyze_state_regime(), analyze_hamiltonian_regime(), analyze_mps_bond_regime()

    • predict_quantum_advantage() for resource planning

    • should_use_ir_grouping() for adaptive algorithm selection

Spectral Lifting (NEW)#

  • Full M_ij Relational Matrix Analysis (ir_enhanced/spectral_lifting.py):

    • compute_relational_matrix() - Build coherence correlation matrices

    • extract_structure_modes() - Find dominant eigenmodes

    • spectral_grouping() - Group observables by spectral similarity

    • coherent_structure_score() - Quantify structure detection quality

Performance Improvements (VALIDATED)#

Feature

Improvement

Status

VQE Grouping

4× circuit reduction

Production

Period Finding

42% shot reduction

Production

Variance Reduction

2-60× (VQE)

Production

MPS Scalability

100 qubits in 1.56s

Validated

Memory Compression

10^25× (100 qubits)

Validated

New IR Modules#

  • gradient_grouping.py - Parameter shift optimization with coherence

  • qaoa_grouping.py - Edge-based cost operator grouping

  • shadow_tomography.py - Adaptive classical shadows with IR

  • state_tomography.py - IR-enhanced state reconstruction

  • tdvp_observables.py - Real-time coherence tracking for TDVP

Added#

GPU CUDA Backend#

  • Direct CUDA Driver API integration via ctypes

  • Pre-compiled PTX kernels (version-independent)

  • Supports single-qubit gates: H, X, Y, Z, RX, RY, RZ

  • Supports two-qubit gates: CNOT, CZ, SWAP

  • f64 precision for numerical stability

  • 2-13× faster than CPU for 15+ qubits

Triton IR Coherence Kernels#

  • GPU-accelerated coherence computation

  • compute_response_coherence_triton() for R-bar, V_phi metrics

  • GO/NO-GO classification at GPU speed

Changed#

  • Improved exception handling in GPU backend

  • Updated ir_enhanced/__init__.py exports for regime analyzer

  • Coherence-aware VQE now includes pre-computation regime analysis

Fixed#

  • Fixed Triton IR Coherence benchmark (amplitudes vs responses/phases)

  • Fixed UCCSD Ansatz benchmark imports

  • Fixed MANIFEST.in to include compiled Rust extensions

Benchmark Results#

  • 30/31 benchmarks passing (cuQuantum optional skip)

  • 7/7 IR Enhanced tests passing

0.6.x Series#

0.6.4 - 2025-11-04#

Added#

UCCSD Ansatz for Molecular VQE#
  • UCCSD (Unitary Coupled-Cluster Singles and Doubles) (ansatz_uccsd.py): Chemistry-aware variational ansatz

    • OpenFermion integration for fermionic operator generation

    • MPS-compatible implementation (no exponential memory)

    • Pauli string decomposition with apply_pauli_exp_to_mps()

    • Hartree-Fock reference state initialization

    • Compatible with VQE for ground state chemistry calculations

Quantum Chemistry & Optimization Hamiltonians#
  • Molecular Hamiltonian Builder (mpo_ops.py): PySCF integration for quantum chemistry

    • molecular_hamiltonian_from_specs() - Build electronic structure Hamiltonians

    • Support for H2, LiH, H2O, and custom geometry strings

    • Jordan-Wigner fermion-to-qubit transformation

    • Compatible with VQE for ground state energy calculations

    • 4/4 tests passing in test_molecular_hamiltonians.py

  • MaxCut Hamiltonian Builder (mpo_ops.py): QAOA graph optimization

    • maxcut_hamiltonian() - Build MaxCut problem Hamiltonians

    • Weighted and unweighted graph support

    • Automatic edge normalization for undirected graphs

    • Compatible with QAOA for combinatorial optimization

    • 4/4 tests passing in test_maxcut.py

Advanced Tensor Network Features#
  • Circuit Cutting (circuit_cutting.py): Partition large circuits for simulation

    • Coupling graph analysis and entanglement heatmaps

    • Min-cut and spectral partitioning algorithms

    • Classical stitching with variance reduction

    • 7/7 tests passing in test_circuit_cutting.py

  • PEPS (Projected Entangled Pair States) (peps.py): 2D tensor networks

    • True 2D representation for shallow quantum circuits

    • Boundary-MPS contraction strategy

    • PatchPEPS for 4×4 and 5×5 grids

    • Single and two-site gate application

    • 10/10 tests passing in test_peps.py

  • Distributed MPS (distributed_mps.py): Multi-GPU scaling

    • Bond-wise domain decomposition across GPUs

    • Overlapped communication and computation

    • Checkpoint/restart for long simulations

    • 10/10 tests passing in test_distributed_mps.py

  • cuQuantum Backend (cuquantum_backend.py): Optional NVIDIA acceleration

    • cuTensorNet 25.x integration for tensor operations

    • Automatic fallback to PyTorch if unavailable

    • 2-10× speedup on compatible NVIDIA GPUs (requires cuquantum-python)

    • 11/11 tests passing in test_cuquantum.py (tested with cuQuantum 25.09.1)

    • Install: pip install cuquantum-python (optional, ~320MB)

Changed#

Improved Import System (Better UX)#
  • Direct module imports now supported (__init__.py): Pythonic import pattern

    • New (recommended): from atlas_q import mpo_ops, tdvp, vqe_qaoa

    • Legacy (still works): atlas_q.get_mpo_ops() returns dict

    • Enables IDE autocomplete and type hints

    • Matches standard Python package conventions (like NumPy, PyTorch)

    • Backwards compatible - old getter pattern still supported

0.5.0 - 2025-10-26#

Added#

GPU Acceleration & Triton Kernels#

  • Custom Triton kernels for MPS gate operations (1.5-3× speedup)

  • GPU-optimized tensor contractions with cuBLAS tensor cores

  • Modular exponentiation kernels for period-finding

  • 77,000+ ops/sec gate throughput achieved

Tensor Network Features#

  • Noise Models (noise_models.py): Full Kraus operator framework for NISQ simulation

    • Depolarizing, dephasing, amplitude damping, Pauli noise channels

    • Stochastic noise applicator with reproducible seeds

  • Stabilizer Backend (stabilizer_backend.py): Clifford circuit fast path

    • O(n²) complexity via Gottesman-Knill theorem

    • 20× speedup over generic MPS

    • Automatic handoff to MPS for non-Clifford gates

  • MPO Operations (mpo_ops.py): Hamiltonian and observable framework

    • Pre-built Hamiltonians: Ising, Heisenberg, custom spin chains

    • Expectation values and correlation functions

  • TDVP (tdvp.py): Time evolution for Hamiltonian dynamics

    • 1-site (conserves bond dimension) and 2-site (adaptive) variants

    • Krylov subspace methods for efficient evolution

  • VQE/QAOA (vqe_qaoa.py): Variational quantum algorithms

    • Ground state finding and combinatorial optimization

    • Hardware-efficient ansätze with classical optimizer integration

Adaptive MPS Implementation#

  • Energy-based adaptive truncation with error bounds

  • Per-bond dimension caps and global memory budgets

  • Mixed precision support (complex64/complex128) with auto-promotion

  • Comprehensive statistics tracking and diagnostics

  • Canonical forms (left, right, mixed) with robust QR/SVD

Documentation & Testing#

  • Complete whitepaper documenting architecture and algorithms

  • Research paper with mathematical foundations

  • 75+ unit tests across unit, integration, and performance suites

  • All 7/7 benchmark suites passing

Performance#

  • 626,454× memory compression (30 qubits)

  • 20.4× Clifford circuit speedup

  • GPU-accelerated operations throughout

  • Demonstrated capacity: 100,000+ qubits (χ=64, moderate entanglement)

Changed#

  • Updated lazy import structure in __init__.py

  • Enhanced numerical stability with multi-driver SVD fallback

  • Improved error tracking and diagnostics

Legend#

  • Added: New features

  • Changed: Changes in existing functionality

  • Fixed: Bug fixes

  • Performance: Performance improvements